Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Agashe, Deepa (Ed.)Abstract The rate at which mutations arise is a fundamental parameter of biology. Despite progress in measuring germline mutation rates across diverse taxa, such estimates are missing for much of Earth's biodiversity. Here, we present the first estimate of a germline mutation rate from the phylum Mollusca. We sequenced three pedigreed families of the white abalone Haliotis sorenseni, a long-lived, large-bodied, and critically endangered mollusk, and estimated a de novo mutation rate of 8.60 × 10−9 single nucleotide mutations per site per generation. This mutation rate is similar to rates measured in vertebrates with comparable generation times and longevity to abalone, and higher than mutation rates measured in faster-reproducing invertebrates. The spectrum of de novo mutations is also similar to that seen in vertebrate species, although an excess of rare C > A polymorphisms in wild individuals suggests that a modifier allele or environmental exposure may have once increased C > A mutation rates. We use our rate to infer baseline effective population sizes (Ne) across multiple Pacific abalone and find that abalone persisted over most of their evolutionary history as large and stable populations, in contrast to extreme fluctuations over recent history and small census sizes in the present day. We then use our mutation rate to infer the timing and pattern of evolution of the abalone genus Haliotis, which was previously unknown due to few fossil calibrations. Our findings are an important step toward understanding mutation rate evolution and they establish a key parameter for conservation and evolutionary genomics research in mollusks.more » « lessFree, publicly-accessible full text available January 7, 2026
- 
            Agashe, Deepa (Ed.)Abstract Genes that undergo horizontal gene transfer (HGT) evolve in different genomic backgrounds. Despite the ubiquity of cross-species HGT, the effects of switching hosts on gene evolution remains understudied. Here, we present a framework to examine the evolutionary consequences of host-switching and apply this framework to an antibiotic resistance gene commonly found on conjugative plasmids. Specifically, we determined the adaptive landscape of this gene for a small set of mutationally connected genotypes in 3 enteric species. We uncovered that the landscape topographies were largely aligned with minimal host-dependent mutational effects. By simulating gene evolution over the experimentally gauged landscapes, we found that the adaptive evolution of the mobile gene in one species translated to adaptation in another. By simulating gene evolution over artificial landscapes, we found that sufficient alignment between landscapes ensures such “adaptive equivalency” across species. Thus, given adequate landscape alignment within a bacterial community, vehicles of HGT such as plasmids may enable a distributed form of genetic evolution across community members, where species can “crowdsource” adaptation.more » « less
- 
            Agashe, Deepa (Ed.)Abstract Because errors at the DNA level power pathogen evolution, a systematic understanding of the rate and molecular spectra of mutations could guide the avoidance and treatment of infectious diseases. We thus accumulated tens of thousands of spontaneous mutations in 768 repeatedly bottlenecked lineages of 18 strains from various geographical sites, temporal spread, and genetic backgrounds. Entailing over ∼1.36 million generations, the resultant data yield an average mutation rate of ∼0.0005 per genome per generation, with a significant within-species variation. This is one of the lowest bacterial mutation rates reported, giving direct support for a high genome stability in this pathogen resulting from high DNA-mismatch-repair efficiency and replication-machinery fidelity. Pathogenicity genes do not exhibit an accelerated mutation rate, and thus, elevated mutation rates may not be the major determinant for the diversification of toxin and secretion systems. Intriguingly, a low error rate at the transcript level is not observed, suggesting distinct fidelity of the replication and transcription machinery. This study urges more attention on the most basic evolutionary processes of even the best-known human pathogens and deepens the understanding of their genome evolution.more » « less
- 
            Agashe, Deepa (Ed.)Abstract Independent origins of sociality in bees and ants are associated with independent expansions of particular odorant receptor (OR) gene subfamilies. In ants, one clade within the OR gene family, the 9-exon subfamily, has dramatically expanded. These receptors detect cuticular hydrocarbons (CHCs), key social signaling molecules in insects. It is unclear to what extent 9-exon OR subfamily expansion is associated with the independent evolution of sociality across Hymenoptera, warranting studies of taxa with independently derived social behavior. Here, we describe OR gene family evolution in the northern paper wasp, Polistes fuscatus, and compare it to four additional paper wasp species spanning ∼40 million years of evolutionary divergence. We find 200 putatively functional OR genes in P. fuscatus, matching predictions from neuroanatomy, and more than half of these are in the 9-exon subfamily. Most OR gene expansions are tandemly arrayed at orthologous loci in Polistes genomes, and microsynteny analysis shows species-specific gain and loss of 9-exon ORs within tandem arrays. There is evidence of episodic positive diversifying selection shaping ORs in expanded subfamilies. Values of omega (dN/dS) are higher among 9-exon ORs compared to other OR subfamilies. Within the Polistes OR gene tree, branches in the 9-exon OR clade experience relaxed negative (relaxed purifying) selection relative to other branches in the tree. Patterns of OR evolution within Polistes are consistent with 9-exon OR function in CHC perception by combinatorial coding, with both natural selection and neutral drift contributing to interspecies differences in gene copy number and sequence.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
